

The Challenges of Interstellar Missions

What is 'wrong' with current rocket propulsion technology?

~25 star systems in 4 parsec radius

Rockets

Common measure of rocket efficiency:

$$I_{sp} = \frac{V_e}{g}$$

Tells us how much Impulse (force x time) per unit mass of propellant expelled.

Propellant	l(secs)
Hydrogen-Flourine	528
Hydrogen-Oxygen	460
O_3H_2	607
F ₂ Li-H ₂	703
O ₂ /Be-H ₂	705

One-way Proxima Centauri Fly-through mission

I(secs)	Mass Ratio
500	1.3x10 ¹³²⁸
1,000	1.1x10 ⁶⁶⁴
5,000	6.5x10 ¹³²
10,000	2.6x10 ³⁶
50,000	1.9x10 ¹³
100,000	4.4x10 ⁶
200,000	2.1x10 ³

$$V_{cruise} = 5\% c$$

 $t_{trip} \sim 86 yrs$

Chemical

$$I_{sp} \approx 1,000s$$

Electric

$$I_{sp} \approx 2,500-10,000s$$

Nuclear Fission

Solid Core

Liquid Core

Gas Core

$$I_{sp} \approx 500 - 1{,}100s$$

$$I_{sp} \approx 1'300 - 1'600s$$

$$I_{sp} \approx 3'000 - 7'000$$

Nuclear Fusion

$$I_{sp} \approx 2'500 - 200'000s$$

Antimatter

3 Possibilities

- i. Use AM annihilation products for propulsion
- ii. Heat a working fluid for propulsion.
- iii. Heat a fluid to generate electricity to power electric spacecraft.

2 Typical Reactions

$$p\widetilde{p}$$
 Charged mesons

$$e^-e^+$$
 Gamma rays

$$I_{sp} > 10^6 s$$

Fusion an attractive option

- ☐ Fusion well understood
- ☐ High specific impulse
- ☐ Produces less radiation than a fission rocket
- ☐ Greatest energy density (neglecting matter/antimatter)

Principles

$$D+T \rightarrow He+n+17.6MeV$$

Coulomb Force

Nuclear Force

Infinite range, repulsive

Short range, attractive

$$\vec{F} = \frac{kq_1q_2}{r^2}\,\hat{r}_{21}$$

$$V(r) = -g^2 \frac{e^{-mr}}{r}$$

To overcome the Coulomb potential we need to make energetic nuclei

$$P(E)dE \propto \sqrt{E}e^{-E/KT}dE$$

$$v_{mp} = \sqrt{\frac{2KT}{m}}$$

$$v_{rms} = \sqrt{\frac{3KT}{m}}$$

mp = most probable rms = root mean square

Particles need sufficient thermal energy to exceed Coulomb repulsion

$$\frac{3}{2}k_BT > \frac{ke^2}{r_{nuc}}$$

Thermal and Coulombic energies

Rearrange

$$T > \frac{2ke^2}{3k_B r_{nuc}}$$

Expression for temperatures

$$T > 10^{10} K$$

Fortunately Quantum Mechanics Comes to the Rescue

$$\Delta x \Delta p_x \ge \frac{h}{4\pi}$$

Fusion Cycles

Important Fusion Cycles

$$D+^{3}He \rightarrow p(14.68MeV)+^{4}H(3.67MeV)$$
 $D+T \rightarrow n(14.07MeV)+^{4}H(3.52MeV)$
 $D+D \rightarrow n(2.45MeV)+^{4}H(0.82MeV) \quad 50\%$
 $\rightarrow p(3.02MeV)+T(1.01MeV) \quad 50\%$
 $^{3}He+^{4}He \rightarrow 2p+^{4}He \qquad 12.86MeV$
 $p+^{11}B \rightarrow 3^{4}He \qquad 8.7MeV$
 $p+^{6}Li \rightarrow ^{3}He(2.3MeV)+^{4}He(1.7MeV)$
 $D+^{6}Li \rightarrow ^{5}$ Primary reactions

Fusion Cycles

Large fraction of charged particles

D+T

Lowest burn temperature

D+D

Fuel is most plentiful on Earth

Legend

Charged Particle

Neutron Power

Thermal Radiation

Power densities for important fusion fuel cycles

Achieving Fusion

Detonation of Atomic Weapon

Magnetic Confinment

ICF

Magnetic Confinment

□ Tokamak

Heating Achieved via:

- Ohmic Heating
- Neutral Beam Injection
- Magnetic Compression
- RF Heating

Notable Reactor: ITER

20 Tokamaks Currently Operating

30 Years Program
Production of 500 MW for 1,000 s
0.5g Deuterium/Tritium Mix
840m³ Reactor
Scheduled to be switched on in 2018
Produce steady-state plasma Q>5

Magnetic Confinment

□ Z-pinch

■ Stellarator

☐ Fusor

Inertial Confinement

ICF Principles

- High energy beams of laser/ions/e⁻
- Pellet (usually D/T)
- Capsule ablation

Ablation

- Absorption
- Energy Transport
- Compression and burn

Aim

To generate sufficient Temperature/Pressure for fusion process. Preferably gain.

Inertial Confinement

- ☐ Direct Drive
 - Spherical fuel pellets
 - Heated by driver

☐ Indirect Drive

- Fuel pellet placed inside Hohlraum
- Hohlraum heated via driver, then re-radiates x-rays to heat fuel
- ☐ Fast Ignition
 - Target compressed using laser driver
 - Implosion reaches maximum density
 - 2nd ultra-short PW pulse heats core

Nuclear Spacecraft

- □ Orion
 - 1958-1965
 - Nuclear Pulse Propulsion
 - Interplanetary
 - 3-5% c (fission)
 - 8-10% c (fusion)
 - Earth to Pluto and back in less than a year!

$$I_{sp} = \frac{C_0 V_e}{g}$$

C_o Collimation factor

$$I_{sp} = 2000 - 6000s$$

$$I_{sp} = 10,000 - 20,000s$$

Nuclear Starships

□ Daedalus

- 1973-1978
- Fusion Pulse Propulsion
- Barnard's star
- 12% c

Numerous advantages over Orion:

- Does not require large size associated with Orion
- No radioactive pollution

$$I_{sp} = 10^6 s$$

Nuclear Starships

The Propulsion Process

- 1. Propellant carried as spheres at crogenic temperatures in disposable tanks.
- 2. Pellets injected into reaction chamber, at high velocity.
- 3. Pellet hit by high powered e- beams.
- 4. Ablation of outer layer, fuel is compressed and shockwave heated. Core reached fusion temperatures.
- 5. Resulting plasma ball directed axially via the field arrangement.
- 6. Plasma KE stored in magnetic field. Plasma direction is reveresed and ejected at high velocity along the engine axis.
- 7. Momentum is transferred into the reaction chamber and thrust is generated.

